Artin groups and the fundamental groups of some moduli by Looijenga E.

By Looijenga E.

Show description

Read or Download Artin groups and the fundamental groups of some moduli spaces PDF

Similar mathematics books

Functional Analysis and Operator Theory

Court cases of a convention Held in reminiscence of U. N. Singh, New Delhi, India, 2-6 August 1990

Intelligent Computer Mathematics: 10 conf., AISC2010, 17 conf., Calculemus 2010, 9 conf., MKM2010

This ebook constitutes the joint refereed court cases of the tenth overseas convention on man made Intelligence and Symbolic Computation, AISC 2010, the seventeenth Symposium at the Integration of Symbolic Computation and Mechanized Reasoning, Calculemus 2010, and the ninth foreign convention on Mathematical wisdom administration, MKM 2010.

Extra info for Artin groups and the fundamental groups of some moduli spaces

Example text

Bourbaki, Groupes et alg`ebres de Lie, Ch. 4,5 et 6, 2ieme ´ed. (Masson, Paris, 1981). 4. E. Brieskorn, ‘Die Fundamentalgruppe des Raumes der regul¨ a ren Orbits einer endlichen komplexen Spiegelungsgruppe’, Invent. Math. 12 (1971) 57–61. 5. E. Brieskorn and K. Saito, ‘Artingruppen und Coxetergruppen’, Invent. Math. 17 (1972) 245–271. 6. P. Deligne, ‘Les immeubles des groupes de tresses g´en´eralis´ees’, Invent. Math. 17 (1972) 273–301. 7. M. Demazure, ‘Surfaces de del Pezzo’, in S´ eminaire sur les Singularit´es des Surfaces, Lecture Notes in Mathematics 777 (Springer, Berlin–New York, 1980).

H. van der Lek, ‘Extended Artin groups’, Proc. Symp. Pure Math. 40–Part 2 (1983) 117–121. 12. A. Libgober, ‘On the fundamental group of the space of cubic surfaces’, Math. Z. 162 (1978) 63–67. ¨ nne, ‘Fundamental Groups of Spaces of Smooth Projective Hypersurfaces’, available at arXiv:math/ 13. M. AG]. 14. Y. Manin, ‘Cubic Forms, 2nd edn (North Holland Math. Library 4, North Holland, 1986). 15. M. Matsumoto, ‘A presentation of mapping class groups in terms of Artin groups and geometric monodromy groups of singularities’, Math.

Math. 12 (1971) 57–61. 5. E. Brieskorn and K. Saito, ‘Artingruppen und Coxetergruppen’, Invent. Math. 17 (1972) 245–271. 6. P. Deligne, ‘Les immeubles des groupes de tresses g´en´eralis´ees’, Invent. Math. 17 (1972) 273–301. 7. M. Demazure, ‘Surfaces de del Pezzo’, in S´ eminaire sur les Singularit´es des Surfaces, Lecture Notes in Mathematics 777 (Springer, Berlin–New York, 1980). 8. I. Dolgachev and A. Libgober, ‘On the fundamental group of the complement to a discriminant variety’, Algebraic geometry (Chicago, Ill, 1980), Lecture Notes in Mathematics 862 (Springer, Berlin–New York, 1981) 1–25.

Download PDF sample

Rated 4.56 of 5 – based on 44 votes